Χρειάζονται μόλις 23 ατόμα ώστε η πιθανότητα 2 από αυτά, να έχουν την ίδια μέρα γενέθλια, να ξεπερνά το 50%! Φαίνεται παράδοξο αλλά αποδεικνύεται με απλά μαθηματικά...
Μόλις κάθισαν οι φοιτητές στις θέσεις τους, ο καθηγητής ρώτησε: "Ποιος θέλει να στοιχηματίσει μαζί μου 5 ευρώ ότι δύο άτομα σε αυτό το αμφιθέατρο, έχουν γενέθλια την ίδια ημέρα;"
Οι φοιτητές κοιτάχτηκαν μεταξύ τους. Συνυπολογίζοντας και τον καθηγητή, υπήρχαν 66 άτομα στο αμφιθέατρο. Οπότε, ενώ ο χρόνος έχει 365 ημέρες, στο αμφιθέατρο υπήρχαν μόνο 66 άτομα, Άρα οι πιθανότητες ήταν με το μέρος τους, σκέφτηκαν οι φοιτητές.
Ένα φοιτητής σήκωσε το χέρι και αποδέχτηκε το στοίχημα. Ο καθηγητής ζήτησε από όσους κάθονταν στην πίσω σειρά να αρχίσουν να φωνάζουν ένας-ένας, την ημέρα των γενεθλίων τους. Και ενώ μόλις 6 άτομα είχαν προλάβει να φωνάξουν την ημερομηνία γενεθλίων, κάποιος από την μέση του αμφιθέατρου αναφώνησε «Αυτή είναι η ημερομηνία και των δικών μου γενεθλίων". Οπότε ο καθηγητής κέρδισε τα 5 ευρώ.
"Θέλει κανείς άλλος να στοιχηματίσει μαζί μου;" ρώτησε.
Ένας άλλος φοιτητής σήκωσε το χέρι, υπολογίζοντας ότι οι πιθανότητες να κερδίσει είναι ακόμα μεγαλύτερες, αφού είχαν μειωθεί πια και οι πιθανότητες της τυχαίας και συμπτωματικής νίκης.
Η διαδικασία επαναλήφθηκε. Αυτή την φορά δεν μετείχε ο φοιτητής που βρέθηκε πριν να έχει ίδια ημερομηνία γενεθλίων με κάποιον άλλο. Χρειάστηκαν πάλι μόνο λίγα άτομα να φωνάξουν την ημερομηνία των γενεθλίων τους, πριν βρεθεί κάποιος άλλος φοιτητής με την ίδια ημερομηνία γενεθλίων. Ο καθηγητής κέρδισε άλλα 5 ευρώ.
«Κάποιος άλλος;" ρώτησε ο καθηγητής.
Ένας άλλος 'γενναίος' φοιτητής δέχτηκε το στοίχημα, αλλά και αυτός έχασε τα 5 ευρώ.
"Άλλος;"
Αυτή τη φορά οι φοιτητές ήταν διστακτικοί. Όμως μετά από λίγο σήκωσε το χέρι του ακόμα ένας. "Τι στο καλό;" σκέφτηκε. "Για πόσο ακόμα θα είναι τυχερός ο καθηγητής;" Όμως μετά από λίγο, διαπίστωσε ότι έχασε και αυτός το στοίχημα.
Κανείς άλλος φοιτητής δεν δέχτηκε να στοιχηματίσει με τον καθηγητή...
Ο καθηγητής εξήγησε στους φοιτητές ότι αυτό το στοίχημα που έβαλε ήταν πολύ ασφαλές για τον ίδιο, παρόλο που αυτοί θεωρούσαν ότι ήταν ριψοκίνδυνο. Οι φοιτητές είχαν εκτιμήσει πολύ λάθος τις πιθανότητες επιτυχίας και αποτυχίας.
Στην πραγματικότητα, οι πιθανότητες του καθηγητή να κερδίσει το στοίχημα ήταν πάνω από 99% (!). Οι πιθανότητες θα παρέμεναν συντριπτικά υπέρ του μέχρι τα συνολικά άτομα να μειωθούν σε 23. Σε αυτό το σημείο οι πιθανότητες θα ήταν 50/50. Αυτό φαίνεται και στο παρακάτω γράφημα που δείχνει την πιθανότητα ανάλογα με τον αριθμό των ατόμων.
Το μάθημα που πρέπει να πάρουμε από την παραπάνω ιστορία είναι το εξής:
Η εκτίμηση των πιθανοτήτων δεν πρέπει να γίνεται με βάση την διαίσθηση. Αν χρειαστεί να πάρετε μια σημαντική απόφαση που απαιτεί εκτίμηση ρίσκου, μην ακούσετε το ένστικτο σας. Πολλές φορές θα αποδειχτεί λάθος (και κάποιες φορές πολύ λάθος). Αναλύστε τα δεδομένα, μελετήστε τα νούμερα, συμβουλευτείτε έναν ειδικό - αν χρειάζεται.
Πώς υπολογίζουμε την πιθανότητα
Άν η πιθανότητα εύρεσης δύο ατόμων που έχουν την ίδια μέρα γενέθλια σε μια ομάδα 23 ατόμων είναι P(A) είναι πιο εύκολο να υπολογίσουμε την αντίθετη πιθανότητα P(A'), να μην υπάρχουν, δηλαδή, δύο άτομα που να έχουν την ίδια μέρα γενέθλια. Καθώς ειναι συμπληρωματικές, ισχύει P(A')+P(A)=1.Όταν δύο γεγονότα είναι ανεξάρτητα το ένα από το άλλο τότε η πιθανότητα να ισχύουν είναι το γινόμενο των διαφορετικών πιθανοτήτων. Επομένως η πιθανότητα P(A') για 23 άτομα είναι P(1)×P(2)×P(3)×...×P(23).
Για ένα άτομο η πιθανότητα είναι 365/365=1, δηλαδή 100%. Για το δεύτερο άτομο η πιθανότητα να μην έχει ίδια ημέρα γενέθλια με το πρώτο είναι 364/365. Για το τρίτο άτομο είναι 363/365. Συνεχίζοντας την ανάλυση βρίσκουμε ότι:
- P(A') = 365/365×364/365×363/365×362/365×...×343/365
- P(A') =0.49270276
- P(A) =1−0.49270276 =0.507297 (50.7297%)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου